Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569970

RESUMEN

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Asunto(s)
Antimonio , Arsénico , Carbón Orgánico , Restauración y Remediación Ambiental , Grafito , Minería , Contaminantes del Suelo , Antimonio/química , Antimonio/análisis , Grafito/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Restauración y Remediación Ambiental/métodos , Suelo/química
2.
J Environ Manage ; 354: 120338, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401494

RESUMEN

The increasing application of metal nanoparticles (NPs) via agrochemicals and sewage sludge results in non-negligible phytotoxicological risks. Herein, the potential phytotoxicity of ZnO and CuO NPs on wheat was determined using integrative chemical, physiological, and metabolomics analyses, in comparison to Zn2+ and Cu2+. It was found that ZnO or CuO NPs had a stronger inhibitory effect on wheat growth than Zn2+ or Cu2+. After exposure to ZnO or CuO NPs, wheat seedlings accumulated significantly higher levels of Zn or Cu than the corresponding Zn2+ or Cu2+ treatments, indicating the active uptake of NPs via wheat root. TEM analysis further confirmed the intake of NPs. Moreover, ZnO or CuO NPs exposure altered micronutrients (Fe, Mn, Cu, and Zn) accumulation in the tissues and decreased the activities of antioxidant enzymes. The metabolomics analysis identified 312, 357, 145, and 188 significantly changed metabolites (SCMs) in wheat root exposed to ZnO NPs, CuO NPs, Zn2+, and Cu2+, respectively. Most SCMs were nano-specific to ZnO (80%) and CuO NPs (58%), suggesting greater metabolic reprogramming by NPs than metal ions. Overall, nanospecific toxicity dominated the phytotoxicity of ZnO and CuO NPs, and our results provide a molecular perspective on the phytotoxicity of metal oxide NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Metales , Óxidos , Plantones/metabolismo , Triticum/metabolismo , Cobre/toxicidad , Cobre/química
3.
Environ Pollut ; 337: 122637, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769707

RESUMEN

Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Humanos , Hierro/análisis , Antimonio/análisis , Electrones , Adsorción , Carbón Orgánico , Agua , Estrés Oxidativo , Contaminantes Químicos del Agua/análisis
4.
Plant Dis ; 104(8): 2123-2129, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32539594

RESUMEN

Myrtle rust, caused by the pathogen Austropuccinia psidii, affects species of the Myrtaceae, many of which are endemic to Australia and New Zealand. Originating from South America, A. psidii is now present in both countries, necessitating effective chemical control for disease management. Using an artificial inoculation protocol, the efficacy of eight fungicides (tebuconazole/trifloxystrobin, cyproconazole/azoxystrobin, fosetyl aluminum, triforine, triadimenol, oxycarboxin, copper, and tebuconazole) applied as curative or protectant treatments was tested on two native New Zealand species (Lophomyrtus × ralphii and Metrosideros excelsa). The impacts of rate (×2), frequency (single or double), and timing (pre- or postinfection) of fungicide application were investigated. Overall, the most effective fungicides tested across both species were those that included a demethylation inhibitor and strobilurin mix, notably tebuconazole/trifloxystrobin (Scorpio) and cyproconazole/azoxystrobin (Amistar Xtra). These fungicides significantly reduced infection of host plants relative to the water control. Timing of application significantly affected bioefficacy, with applications made 7 days before inoculation or 7 days after inoculation being generally the most effective. The rate of fungicide application was not significant for both host species, with few interaction terms showing overall significance. Key findings from this study will set the foundation for further fungicide bioefficacy research conducted to evaluate formulations and adjuvant mixtures, determine suitable application methods for enhanced retention and coverage, and derive optimum application time for effective protection of native and exotic Myrtaceae species in New Zealand.


Asunto(s)
Fungicidas Industriales , Myrtus , Australia , Nueva Zelanda , Enfermedades de las Plantas , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...